GABAergic disinhibition affects responses of bat inferior collicular neurons to temporally patterned sound pulses.
نویسندگان
چکیده
Using the big brown bat, Eptesicus fuscus, as a model mammalian auditory system, we studied the effect of GABAergic disinhibition by bicuculline on the responses of inferior collicular (IC) neurons to temporally patterned trains of sound pulses delivered at different pulse repetition rates (PRRs) under free-field stimulation conditions. All 66 neurons isolated from eight bats either discharged one to two impulses (phasic on responders, n = 41, 62%), three to eight impulses (phasic bursters, n = 19, 29%), or many impulses throughout the entire duration of the stimulus (tonic responders, n = 6, 9%). Whereas 50 neurons responded vigorously to frequency-modulated (FM) pulses, 16 responded poorly or not at all to FM pulses. Bicuculline application increased the number of impulses of all 66 neurons in response to 4 ms pulses by 15-1,425%. The application also changed most phasic on responders into phasic bursters or tonic responders, resulting in 12 (18%) phasic on responders, 34 (52%) phasic bursters, and 20 (30%) tonic responders. Response latencies of these neurons were either shortened (n = 25, 38%) by 0.5-6.0 ms, lengthened (n = 9, 14%) by 0. 5-2.5 ms or not changed (n = 32, 48%) on bicuculline application. Each neuron had a highest response repetition rate beyond which the neuron failed to respond. Bicuculline application increased the highest response repetition rates of 62 (94%) neurons studied. The application also increased the highest 100% pulse-locking repetition rates of 21 (32%) neurons and facilitated 27 (41%) neurons in response to more pulses at the same PRR than predrug conditions. According to average rate-based modulation transfer functions (average rate MTFs), all 66 neurons had low-pass filtering characteristics both before and after bicuculline application. According to total discharge rate-based modulation transfer functions (total rate MTFs), filtering characteristics of these neurons can be described as band-pass (n = 52, 79%), low-pass (n = 12, 18%), or high-pass (n = 2, 3%) before bicuculline application. Bicuculline application changed the filtering characteristics of 14 (21%) neurons. According to synchronization coefficient-based modulation transfer functions, filtering characteristics of these neurons can be described as low-pass (n = 41, 62%), all-pass (n = 11, 17%), band-suppression (n = 7, 10.5%), and band-suppression-band-pass filters (n = 7, 10.5%). Bicuculline application changed filtering characteristics of 19 (29%) neurons.
منابع مشابه
GABAergic inhibition modulates intensity sensitivity of temporally patterned pulse trains in the inferior collicular neurons in big brown bats.
The echolocating big brown bats (Eptesicus fuscus) emit trains of frequency-modulated (FM) biosonar signals with duration, amplitude, repetition rate, and sweep structure changing systematically during interception of their prey. In the present study, the sound stimuli of temporally patterned pulse trains at three different pulse repetition rates (PRRs) were used to mimic the sounds received du...
متن کاملModulation of responses and frequency tuning of thalamic and collicular neurons by cortical activation in mustached bats.
In the Jamaican mustached bat, Pteronotus parnellii parnellii, one of the subdivisions of the primary auditory cortex is disproportionately large and over-represents sound at approximately 61 kHz. This area, called the Doppler-shifted constant frequency (DSCF) processing area, consists of neurons extremely sharply tuned to a sound at approximately 61 kHz. We found that a focal activation of the...
متن کاملCorticofugal modulation of amplitude domain processing in the midbrain of the big brown bat, Eptesicus fuscus.
Recent studies have shown that the corticofugal system systematically modulates and improves subcortical signal processing in the frequency, time and spatial domains. The present study examined corticofugal modulation of amplitude sensitivity of 113 corticofugally inhibited neurons in the central nucleus of the inferior colliculus (IC) of the big brown bat, Eptesicus fuscus. Cortical electrical...
متن کاملDynamic temporal signal processing in the inferior colliculus of echolocating bats
In nature, communication sounds among animal species including humans are typical complex sounds that occur in sequence and vary with time in several parameters including amplitude, frequency, duration as well as separation, and order of individual sounds. Among these multiple parameters, sound duration is a simple but important one that contributes to the distinct spectral and temporal attribu...
متن کاملEffects of backward masking on the responses of the inferior collicular neurons in the big brown bat, Eptesicus fuscus.
Temporal features of sound convey information vital for behaviors as diverse as speech recognition by human and echolocation by bats. However, auditory stimuli presented in temporal proximity might interfere with each other. Although much progress has been made in the description of this phenomenon from psychophysical studies, the neural mechanism responsible for its formation at central audito...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 79 5 شماره
صفحات -
تاریخ انتشار 1998